Calcium channel inhibitor, verapamil, inhibits the voltage-dependent K+ channels in rabbit coronary smooth muscle cells.

نویسندگان

  • Eun A Ko
  • Won Sun Park
  • Youn Kyoung Son
  • Jae-Hong Ko
  • Tae-Hoon Choi
  • In Duk Jung
  • Yeong-Min Park
  • Da Hye Hong
  • Nari Kim
  • Jin Han
چکیده

We investigated the effect of the phenylalkylamine Ca(2+) channel inhibitor verapamil on voltage-dependent K(+) (Kv) channels in rabbit coronary arterial smooth muscle cells using a whole-cell patch clamp technique. Verapamil reduced the Kv current amplitude in a concentration-dependent manner. The apparent K(d) value for Kv channel inhibition was 0.82 microM. Although verapamil had no effect on the activation kinetics, it accelerated the decay rate of Kv channel inactivation. The rate constants of association and dissociation by verapamil were 2.20+/-0.02 microM(-1) s(-1), and 1.79+/-0.26 s(-1), respectively. The steady-state activation and inactivation curves were unaffected by verapamil. The application of train pulses increased the verapamil-induced Kv channel inhibition. Furthermore, verapamil increased the recovery time constant, suggesting that the inhibitory effect of this agent was use-dependent. The inhibitory effect of verapamil was not affected by intracellular and extracellular Ca(2+)-free conditions. Another Ca(2+) channel inhibitor, nifedipine (10 microM) did not affect the Kv current, and did not alter the inhibitory effect of verapamil. Based on these results, we concluded that verapamil inhibited Kv current in a state-, time-, and use-dependent manner, independent of Ca(2+) channel inhibition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

W-7 inhibits voltage-dependent K(+) channels independent of calmodulin activity in rabbit coronary arterial smooth muscle cells.

We investigated the effect of W-7, a calmodulin inhibitor, on voltage-dependent K(+) (Kv) channels in freshly isolated coronary arterial smooth muscle cells using the whole-cell patch clamp technique. The amplitude of Kv currents was inhibited by W-7 in a concentration-dependent manner, with an IC50 value of 3.38±0.47μM and a Hill coefficient of 0.84±0.10. W-7 shifted the activation curve to a ...

متن کامل

Nortriptyline, a tricyclic antidepressant, inhibits voltage-dependent K+ channels in coronary arterial smooth muscle cells

We demonstrated the effect of nortriptyline, a tricyclic antidepressant drug and serotonin reuptake inhibitor, on voltage-dependent K+ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells using a whole-cell patch clamp technique. Nortriptyline inhibited Kv currents in a concentration-dependent manner, with an apparent IC50 value of 2.86±0.52 µM and a Hill coefficient o...

متن کامل

Escitalopram, a selective serotonin reuptake inhibitor, inhibits voltage-dependent K+ channels in coronary arterial smooth muscle cells

We investigated the inhibitory effect of escitalopram, a selective serotonin reuptake inhibitor (SSRI), on voltage-dependent K+ (Kv) channels in freshly separated from rabbit coronary arterial smooth muscle cells. The application of escitalopram rapidly inhibited vascular Kv channels. Kv currents were progressively inhibited by an increase in the concentrations of escitalopram, suggesting that ...

متن کامل

Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes

The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...

متن کامل

Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes

The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biological & pharmaceutical bulletin

دوره 33 1  شماره 

صفحات  -

تاریخ انتشار 2010